1. Gulrajani RM, Roberge FA, Mailloux GE. The forward problem of electrocardiography. In: Macfarlane P, Lawrie T, eds. Comprehensive Electrocardiology: Theory and Practice in Health and Disease. Vol 1. 1st ed. New York, NY: Pergamon Press; 1989:197-236.
2. Gulrajani RM, Roberge FA, Savard P. The inverse problem of electrocardiography. In: Macfarlane P, Lawrie T, eds. Comprehensive Electrocardiology: Theory and Practice in Health and Disease. Vol 1. 1st ed. New York, NY: Pergamon Press; 1989:237-288.
3. Maynard SJ, Menown IB, Manoharan G, et al. Body surface mapping improves early diagnosis of acute myocardial infarction in patients with chest pain and left bundle branch block.
Heart. 2003;89:998-1002.
[PubMed: 12923008]
4. Menown IB, Patterson RS, MacKenzie G, et al. Body-surface map models for early diagnosis of acute myocardial infarction. J Electrocardiol. 1998;31(Suppl):180-188.
5. Kornreich F, Rautaharju PM, Warren J, et al. Identification of best electrocardiographic leads for diagnosing myocardial infarction by statistical analysis of body surface potential maps.
Am J Cardiol. 1985;56:852-856.
[PubMed: 4061325]
6. Menown IB, Allen J, Anderson JM, et al. Early diagnosis of right ventricular or posterior infarction associated with inferior wall left ventricular acute myocardial infarction.
Am J Cardiol. 2000;85:934-938.
[PubMed: 10760329]
7. Drew BJ, Pelter MM, Wung SF, et al. Accuracy of the EASI 12-lead electrocardiogram compared to the standard 12-lead electrocardiogram for diagnosing multiple cardiac abnormalities. J Electrocardiol. 1999;32(Suppl):38-47.
8. Rautaharju PM, Zhou SH, Hancock EW, et al. Comparability of 12-lead ECGs derived from EASI leads with standard 12-lead ECGS in the classification of acute myocardial ischemia and old myocardial infarction. J Electrocardiol. 2002;35(Suppl):35-39.
9. Drew BJ, Adams MG, Pelter MM, et al. ST segment monitoring with a derived 12-lead electrocardiogram is superior to routine cardiac care unit monitoring.
Am J Crit Care. 1996;5:198-206.
[PubMed: 8722923]
10. Feldman CL, MacCallum G, Hartley LH. Comparison of the standard ECG with the EASI cardiogram for ischemia detection during exercise monitoring. Proc Comput Cardiol. 1997;24:343-345.
11. Wehr G, Peters R, Khalife K, et al. A vector-based 5 electrode 12-lead ECG (EASI) is equivalent to the conventional 12-lead ECG for diagnosis of myocardial ischemia. J Am Coll Cardiol. 2002;39:122A.
12. Klein M, Key-Brothers I, Feldman C. Can the vectorcardiographically derived EASI ECG be a suitable surrogate for the standard ECG in selected circumstances? Proc Comput Cardiol. 1997;5:721-724.
13. Horacek BM, Warren JW, Stovicek P, et al. Diagnostic accuracy of derived versus standard 12-lead electrocardiograms. J Electrocardiol. 2000;33(Suppl):155-160.
14. Sejersten M, Pahlm O, Pettersson J, et al. The relative accuracies of ECG precordial lead waveforms derived from EASI leads and those acquired from paramedic applied standard leads.
J Electrocardiol. 2003;36:179-185.
[PubMed: 12942479]
15. Dellborg M, Topol EJ, Swedberg K. Dynamic QRS complex and ST segment vectorcardiographic monitoring can identify vessel patency in patients with acute myocardial infarction treated with reperfusion therapy.
Am Heart J. 1991;122:943-948.
[PubMed: 1927880]
16. Dellborg M, Steg P, Simoons M, et al. Vectorcardiographic monitoring to assess early vessel patency after reperfusion therapy for acute myocardial infarction.
Eur Heart J. 1995;16:21-29.
[PubMed: 7737216]
17. Dellborg M, Herlitz J, Risenfors M, et al. Electrocardiographic assessment of infarct size: comparison between QRS scoring of 12-lead electrocardiography and dynamic vectorcardiography.
Int J Cardiol. 1993;40:167-172.
[PubMed: 8349380]
18. Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59:23C-30C.
19. Krachmer AW. Infective endocarditis. In: Braunwald E, Zipes DP, Libby P, eds. Heart Disease. 6th ed. Philadelphia, PA: W.B. Saunders Company; 2001:1723-1750.
20. Gersh BJ, Bassendine MF, Forman R, et al. Coronary artery spasm and myocardial infarction in the absence of angiographically demonstrable obstructive coronary disease.
Mayo Clin Proc. 1981;56:700-708.
[PubMed: 7300449]
21. Lip GY, Gupta J, Khan MM, et al. Recurrent myocardial infarction with angina and normal coronary arteries.
Int J Cardiol. 1995;51:65-71.
[PubMed: 8522399]
22. Jennings RB, Murry CE, Steenbergen C Jr, et al. Development of cell injury in sustained acute ischemia. Circulation. 1990;82:II2-II12.
23. Jennings RB, Schaper J, Hill ML, et al. Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure.
Circ Res. 1985;56:262-278.
[PubMed: 3971504]
24. Camacho SA, Figueredo VM, Brandes R, et al. Ca(2+)-dependent fluorescence transients and phosphate metabolism during low-flow ischemia in rat hearts. Am J Physiol. 1993;265:H114-H122.
25. Meissner A, Morgan JP. Contractile dysfunction and abnormal Ca2+ modulation during postischemic reperfusion in rat heart. Am J Physiol. 1995;268:H100-H111.
26. Cinca J, Figueras J, Senador G, et al. Transmural DC electrograms after coronary artery occlusion and latex embolization in pigs. Am J Physiol. 1984;246:H475-H482.
27. Janse MJ, Cinca J, Morena H, et al. The "border zone" in myocardial ischemia. An electrophysiological, metabolic, and histochemical correlation in the pig heart.
Circ Res. 1979;44:576-588.
[PubMed: 428053]
28. Smith GT, Geary G, Ruf W, et al. Epicardial mapping and electrocardiographic models of myocardial ischemic injury.
Circulation. 1979;60:930-938.
[PubMed: 113130]
29. Sylven C. Mechanisms of pain in angina pectoris—a critical review of the
adenosine hypothesis.
Cardiovasc Drugs Ther. 1993;7:745-759.
[PubMed: 8110616]
30. Reimer KA, Jennings RB. The "wavefront phenomenon" of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow.
Lab Invest. 1979;40:633-644.
[PubMed: 449273]
31. Hedström E, Engblom H, Frogner F, et al. Infarct evolution in man studied in patients with first-time coronary occlusion in comparison to different species: implications for assessment of myocardial salvage. J Cardiovasc Magn Reson. 2009;11:38.
32. Kubota I, Yamaki M, Shibata T, et al. Role of ATP-sensitive K+ channel on ECG ST segment elevation during a bout of myocardial ischemia. A study on epicardial mapping in dogs.
Circulation. 1993;88:1845-1851.
[PubMed: 8403330]
33. Goldberger AL. Hyperacute T waves revisited.
Am Heart J. 1982;104:888-890.
[PubMed: 7124610]
34. Downar E, Janse MJ, Durrer D. The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart.
Circulation. 1977;56:217-224.
[PubMed: 872313]
35. Kleber AG. Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts.
Circ Res. 1983;52:442-450.
[PubMed: 6831660]
36. Samson WE, Scher AM. Mechanism of S-T segment alteration during acute myocardial injury.
Circ Res. 1960;8:780-787.
[PubMed: 14441272]
37. Janse MJ. ST segment mapping and infarct size.
Cardiovasc Res. 2000;45:190-193.
[PubMed: 10728334]
38. Boden WE, Kleiger RE, Gibson RS, et al. Electrocardiographic evolution of posterior acute myocardial infarction: importance of early precordial ST-segment depression.
Am J Cardiol. 1987;59:782-787.
[PubMed: 3825938]
39. Wagner GS, Macfarlane P, Wellens H, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part VI: acute ischemia/infarction: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation. 2009;119:e262-e270.
40. Macfarlane PW. Age, sex, and the ST amplitude in health and disease. J Electrocardiol. 2001;34(Suppl):235-241.
41. Macfarlane PW, Browne D, Devine B, et al. Modification of ACC/ESC criteria for acute myocardial infarction. J Electrocardiol. 2004;37(Suppl):98-103.
42. Surawicz B, Parikh SR. Prevalence of male and female patterns of early ventricular repolarization in the normal ECG of males and females from childhood to old age.
J Am Coll Cardiol. 2002;40:1870-1876.
[PubMed: 12446073]
43. Surawicz B, Knilans T. Chou's Electrocardiography in Clinical Practice. 5th ed. Philadelphia, PA: WB Saunders; 2001.
44. Thygesen K, Alpert JS, White HD, et al. Universal definition of myocardial infarction.
Circulation. 2007;116(22):2634-2653.
[PubMed: 17951284]
45. Mandel WJ, Burgess MJ, Neville J Jr, et al. Analysis of T-wave abnormalities associated with myocardial infarction using a theoretic model.
Circulation. 1968;38:178-188.
[PubMed: 11712287]
46. Selvester RH, Wagner GS, Ideker RE. Myocardial infarction. In: Macfarlane P, Lawrie T, eds. Comprehensive Electrocardiology: Theory and Practice in Health and Disease. Vol. 1. 1st ed. New York, NY: Pergamon Press; 1989:566-629.
47. Phibbs B, Marcus F, Marriott HJ, et al. Q-wave versus non-Q wave myocardial infarction: a meaningless distinction.
J Am Coll Cardiol. 1999;33:576-582.
[PubMed: 9973042]
48. Prinzmetal M, Shaw CM Jr, Maxwell MH, et al. Studies on the mechanism of ventricular activity. VI. The depolarization complex in pure subendocardial infarction: role of the subendocardial region in the normal electrocardiogram.
Am J Med. 1954;16:469-489.
[PubMed: 13148190]
49. Phibbs B. "Transmural" versus "subendocardial" myocardial infarction: an electrocardiographic myth.
J Am Coll Cardiol. 1983;1:561-564.
[PubMed: 6826967]
50. Pipberger HV, Lopez EA. "Silent" subendocardial infarcts: fact or fiction?
Am Heart J. 1980;100:597-599.
[PubMed: 7446356]
51. Spodick DH. Q-wave infarction versus S-T infarction. Nonspecificity of electrocardiographic criteria for differentiating transmural and nontransmural lesions.
Am J Cardiol. 1983;51:913-915.
[PubMed: 6829457]
52. Holland RP, Arnsdorf MF. Solid angle theory and the electrocardiogram: physiologic and quantitative interpretations.
Prog Cardiovasc Dis. 1977;19:431-457.
[PubMed: 140415]
53. Braunwald E, Maroko PR. The reduction of infarct size–an idea whose time (for testing) has come.
Circulation. 1974;50:206-209.
[PubMed: 4846628]
54. Braunwald E, Maroko PR. ST-segment mapping. Realistic and unrealistic expectations.
Circulation. 1976;54:529-532.
[PubMed: 963843]
55. Holland RP, Brooks H, Lidl B. Spatial and nonspatial influences on the TG-ST segment deflection of ischemia. Theoretical and experimental analysis in the pig.
J Clin Invest. 1977;60:197-214.
[PubMed: 874084]
56. Aldrich HR, Wagner NB, Boswick J, et al. Use of initial ST-segment deviation for prediction of final electrocardiographic size of acute myocardial infarcts.
Am J Cardiol. 1988;61:749-753.
[PubMed: 3354437]
57. Ripa RS, Holmvang L, Maynard C, et al. Consideration of the total ST-segment deviation on the initial electrocardiogram for predicting final acute posterior myocardial infarct size in patients with maximum ST-segment deviation as depression in leads V1 through V3. A FRISC II substudy.
J Electrocardiol. 2005;38:180-186.
[PubMed: 16003697]
58. Clemmensen P, Grande P, Saunamaki K, et al. Effect of intravenous streptokinase on the relation between initial ST-predicted size and final QRS-estimated size of acute myocardial infarcts.
J Am Coll Cardiol. 1990;16:1252-1257.
[PubMed: 2229775]
59. Clemmensen P, Ohman EM, Sevilla DC, et al. Importance of early and complete reperfusion to achieve myocardial salvage after thrombolysis in acute myocardial infarction.
Am J Cardiol. 1992;70:1391-1396.
[PubMed: 1442606]
60. Christian TF, Gibbons RJ, Clements IP, et al. Estimates of myocardium at risk and collateral flow in acute myocardial infarction using electrocardiographic indexes with comparison to radionuclide and angiographic measures.
J Am Coll Cardiol. 1995;26:388-393.
[PubMed: 7608439]
61. Reduction of infarct size with the early use of
timolol in acute myocardial infarction.
N Engl J Med. 1984;310:9-15.
62. Grottum P, Mohr B, Kjekshus JK. Evolution of vectorcardiographic QRS changes during myocardial infarction in dogs and their relation to infarct size.
Cardiovasc Res. 1986;20:108-116.
[PubMed: 3708644]
63. Grottum P, Sederholm M, Kjekshus JK. Quantitative and temporal relation between the release of myoglobin and creatine kinase and the evolution of vectorcardiographic changes during acute myocardial infarction in man.
Cardiovasc Res. 1987;21:652-659.
[PubMed: 3446369]
64. Dellborg M, Riha M, Swedberg K. Dynamic QRS and ST-segment changes in myocardial infarction monitored by continuous on-line vectorcardiography. J Electrocardiol. 1990;23(Suppl):11-19.
65. Dellborg M, Riha M, Swedberg K. Dynamic QRS-complex and ST-segment monitoring in acute myocardial infarction during recombinant tissue-type plasminogen activator therapy. The TEAHAT Study Group.
Am J Cardiol. 1991;67:343-349.
[PubMed: 1899776]
66. Frank E. An accurate, clinically practical system for spatial vectorcardiography.
Circulation. 1956;13:737-749.
[PubMed: 13356432]
67. Steg PG, Faraggi M, Himbert D, et al. Comparison using dynamic vectorcardiography and MIBI SPECT of ST-segment changes and myocardial MIBI uptake during percutaneous transluminal coronary angioplasty of the left anterior descending coronary artery.
Am J Cardiol. 1995;75:998-1002.
[PubMed: 7747702]
68. Faraggi M, Steg PG, Francois D, et al. Residual area at risk after anterior myocardial infarction: are ST segment changes during coronary angioplasty a reliable indicator? A comparison with technetium 99m-labeled sestamibi single-photon emission computed tomography.
J Nucl Cardiol. 1997;4:11-17.
[PubMed: 9138834]
69. Jensen SM, Karp K, Rask P, et al. Assessment of myocardium at risk with computerized vectorcardiography and technetium-99m-sestamibi-single photon emission computed tomography during coronary angioplasty.
Scand Cardiovasc J. 2002;36:11-18.
[PubMed: 12018761]
70. Strauss DG, Olson CW, Wu KC, et al. Vectorcardiogram synthesized from the 12-lead electrocardiogram to image ischemia.
J Electrocardiol. 2009;42:190-197.
[PubMed: 19237001]
71. Sclarovsky S, Mager A, Kusniec J, et al. Electrocardiographic classification of acute myocardial ischemia.
Isr J Med Sci. 1990;26:525-531.
[PubMed: 2228566]
72. Billgren T, Birnbaum Y, Sgarbossa EB, et al. Refinement and interobserver agreement for the electrocardiographic Sclarovsky-Birnbaum ischemia grading system.
J Electrocardiol. 2004;37:149-156.
[PubMed: 15286927]
73. Birnbaum Y, Kloner RA, Sclarovsky S, et al. Distortion of the terminal portion of the QRS on the admission electrocardiogram in acute myocardial infarction and correlation with infarct size and long-term prognosis (Thrombolysis in Myocardial Infarction 4 Trial).
Am J Cardiol. 1996;78:396-403.
[PubMed: 8752182]
74. Birnbaum Y, Herz I, Sclarovsky S, et al. Prognostic significance of the admission electrocardiogram in acute myocardial infarction.
J Am Coll Cardiol. 1996;27:1128-1132.
[PubMed: 8609331]
75. Sejersten M, Birnbaum Y, Ripa RS, et al. Influences of electrocardiographic ischaemia grades and symptom duration on outcomes in patients with acute myocardial infarction treated with thrombolysis versus primary percutaneous coronary intervention: results from the DANAMI-2 trial.
Heart. 2006;92:1577-1582.
[PubMed: 16740918]
76. Anderson ST, Wilkins M, Weaver WD, et al. Electrocardiographic phasing of acute myocardial infarction. J Electrocardiol. 1992;25(Suppl):3-5.
77. Wilkins ML, Pryor AD, Maynard C, et al. An electrocardiographic acuteness score for quantifying the timing of a myocardial infarction to guide decisions regarding reperfusion therapy.
Am J Cardiol. 1995;75:617-620.
[PubMed: 7887390]
78. Gambill CL, Wilkins ML, Haisty WK Jr, et al. T wave amplitudes in normal populations. Variation with ECG lead, sex, and age.
J Electrocardiol. 1995;28:191-197.
[PubMed: 7595121]
79. Sejersten M, Ripa RS, Maynard C, et al. Timing of ischemic onset estimated from the electrocardiogram is better than historical timing for predicting outcome after reperfusion therapy for acute anterior myocardial infarction: a DANish trial in Acute Myocardial Infarction 2 (DANAMI-2) substudy. Am Heart J. 2007;154:e61-e68.
80. Pardee HEB. An electrocardiographic sign of coronary artery obstruction. Arch Intern Med. 1920;26:244-257.
81. Strauss DG, Selvester RH. The QRS complex—a biomarker that "images" the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction.
J Electrocardiol. 2009;42:85-96.
[PubMed: 18790501]
82. Zinn WJ, Cosby RS. Myocardial infarction; a re-evaluation of the diagnostic accuracy of the electrocardiogram.
Am J Med. 1950;8:177-179.
[PubMed: 15405882]
83. Johnson WJ, Achor RW, Burchell HB, et al. Unrecognized myocardial infarction: a clinicopathologic study.
AMA Arch Intern Med. 1959;103:253-261.
[PubMed: 13616761]
84. Woods JD, Laurie W, Smith WG. The reliability of the electrocardiogram in myocardial infarction.
Lancet. 1963;2:265-269.
[PubMed: 14001808]
85. Savage RM, Wagner GS, Ideker RE, et al. Correlation of postmortem anatomic findings with electrocardiographic changes in patients with myocardial infarction: retrospective study of patients with typical anterior and posterior infarcts.
Circulation. 1977;55:279-285.
[PubMed: 832343]
86. Blackburn H, Keys A, Simonson E, et al. The electrocardiogram in population studies. A classification system.
Circulation. 1960;21:1160-1175.
[PubMed: 13849070]
87. Pahlm US, Chaitman BR, Rautaharju PM, et al. Comparison of the various electrocardiographic scoring codes for estimating anatomically documented sizes of single and multiple infarcts of the left ventricle.
Am J Cardiol. 1998;81:809-815.
[PubMed: 9555767]
88. Durrer D, van Dam RT, Freud GE, et al. Total excitation of the isolated human heart.
Circulation. 1970;41:899-912.
[PubMed: 5482907]
89. Selvester RH, Solomon JC, Gillespie TL. Digital computer model of a total body electrocardiographic surface map. An adult male-torso simulation with lungs.
Circulation. 1968;38:684-690.
[PubMed: 5677953]
90. Taccardi B. Distribution of heart potentials on the thoracic surface of normal human subjects.
Circ Res. 1963;12:341-352.
[PubMed: 13980115]
91. Wagner GS, Freye CJ, Palmeri ST, et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. I. Specificity and observer agreement.
Circulation. 1982;65:342-347.
[PubMed: 7053893]
92. Ideker RE, Wagner GS, Ruth WK, et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. II. Correlation with quantitative anatomic findings for anterior infarcts.
Am J Cardiol. 1982;49:1604-1614.
[PubMed: 7081049]
93. Roark SF, Ideker RE, Wagner GS, et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. III. Correlation with quantitative anatomic findings for inferior infarcts.
Am J Cardiol. 1983;51:382-389.
[PubMed: 6823852]
94. Ward RM, White RD, Ideker RE, et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. IV. Correlation with quantitative anatomic findings for posterolateral infarcts.
Am J Cardiol. 1984;53:706-714.
[PubMed: 6702617]
95. Hindman NB, Schocken DD, Widmann M, et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. V. Specificity and method of application of the complete system.
Am J Cardiol. 1985;55:1485-1490.
[PubMed: 4003290]
96. Sevilla DC, Wagner NB, White RD, et al. Anatomic validation of electrocardiographic estimation of the size of acute or healed myocardial infarcts.
Am J Cardiol. 1990;65:1301-1307.
[PubMed: 2343818]
97. Andresen A, Dobkin J, Maynard C, et al. Validation of advanced ECG diagnostic software for the detection of prior myocardial infarction by using nuclear cardiac imaging.
J Electrocardiol. 2001;34:243-248.
[PubMed: 11781963]
98. Palmeri ST, Harrison DG, Cobb FR, et al. A QRS scoring system for assessing left ventricular function after myocardial infarction.
N Engl J Med. 1982;306:4-9.
[PubMed: 7053469]
99. Bounous EP Jr, Califf RM, Harrell FE Jr, et al. Prognostic value of the simplified Selvester QRS score in patients with coronary artery disease.
J Am Coll Cardiol. 1988;11:35-41.
[PubMed: 3335703]
100. Jones MG, Anderson KM, Wilson PW, et al. Prognostic use of a QRS scoring system after hospital discharge for initial acute myocardial infarction in the Framingham cohort.
Am J Cardiol. 1990;66:546-550.
[PubMed: 2392975]
101. Hinohora T, Wagner NB, Cobb FR, et al. An ischemic index from the electrocardiogram to select patients with low left ventricular ejection fraction for coronary artery bypass grafting.
Am J Cardiol. 1988;61:288-291.
[PubMed: 3341204]
102. Bharati S. Pathology of the conduction system. In:
Silver MD, ed.
Cardiovascular Pathology. Vol. 1. New York, NY: Churchill Livingstone; 2001:607-628.
103. Rosenbaum MB, Elizari MV, Lázzari LO. The Hemiblocks. Oldsmar, FL: Tampa Tracings; 1970.
104. Elizari MV, Acunzo RS, Ferreiro M. Hemiblocks revisited.
Circulation. 2007;115:1154-1163.
[PubMed: 17339573]
105. Strauss DG, Selvester RH. The QRS complex: a biomarker that "images" the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction. J Electrocardiol. 2009;42:86-97.
106. Strauss DG, Selvester RH, Lima JA, et al. ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis.
Circ Arrhythm Electrophysiol. 2008;1:327-336.
[PubMed: 19808427]
107. Strauss DG, Poole JE, Wagner GS, et al. Quantification of myocardial scar using a simple ECG tool identifies patients at risk for sudden arrhythmic death: an analysis of SCD-HeFT. Circulation. 2009;120:5646-5647 (abstract).
108. Sweeney MO, van Bommel RJ, Schalij MJ, et al. Analysis of ventricular activation using surface electrocardiography to predict left ventricular reverse volumetric remodeling during cardiac resynchronization therapy.
Circulation. 2010;121:626-634.
[PubMed: 20100970]
109. Kalahasty G, Ellenbogen KA. Simpler is better: new lessons learned from the 12-lead electrocardiogram.
Circulation. 2010;121:617-619.
[PubMed: 20100978]
110. Vassallo JA, Cassidy DM, Marchlinski FE, et al. Endocardial activation of left bundle branch block.
Circulation. 1984;69:914-923.
[PubMed: 6705167]
111. Van Dam RT, Janse MJ. Activation of the heart. In: Macfarlane PW, Lawrie TDV, eds. Comprehensive Electrocardioglogy: Theory and Practice in Health in Disease. New York, NY: Pergamon Press; 1989:101-127.
112. Selvester RHS, Solomon JC. Computer simulation of ventricular depolarization, QRS duration and quantification of wall thickness. In: Willems JL, Van Bemmel JH, Zywitz C, eds. Computer ECG Analysis: Toward Standardization. Amsterdam, the Netherlands: North Holland; 1986:221-272.
113. Grant RP, Dodge HT. Mechanisms of QRS complex prolongation in man: left ventricular conduction disturbances.
Am J Med. 1956;20:834-852.
[PubMed: 13326898]
114. Horowitz LN, Alexander JA, Edmunds LH Jr. Postoperative right bundle branch block: identification of three levels of block.
Circulation. 1980;62:319-328.
[PubMed: 7397974]
115. Milliken JA, Macfarlane PW, Lawrie TDV. Enlargement and hypertrophy. In: Macfarlane PW, Lawrie TDV, eds. Comprehensive Electrocardiology: Theory and Practice in Health and Disease. New York, NY: Pergamon Press; 1989:631-670.
116. Okin PM, Roman MJ, Devereux RB, et al. Time-voltage QRS area of the 12-lead electrocardiogram: detection of left ventricular hypertrophy.
Hypertension. 1998;31:937-942.
[PubMed: 9535418]
117. Wyndham CR, Meeran MK, Smith T, et al. Epicardial activation in human left anterior fascicular block.
Am J Cardiol. 1979;44:638-644.
[PubMed: 314751]
118. Selvester RH, Solomon JC. Computer simulations of ventricular depolarization, QRS duration and quantitation of wall thickness, computer ECG analysis: towards standardisations. Paper presented at the 3rd International Conference on Common Standards for Quantitative Electrocardiography, Amsterdam, the Netherlands, 1985.
119. Ubachs JF, Engblom H, Hedstrom E, et al. Location of myocardium at risk in patients with first-time ST-elevation infarction: comparison among single photon emission computed tomography, magnetic resonance imaging, and electrocardiography.
J Electrocardiol. 2009;42:198-203.
[PubMed: 19100566]
120. Bacharova L, Mateasik A, Carnicky J, et al. The Dipolar ElectroCARdioTOpographic (DECARTO)-like method for graphic presentation of location and extent of area at risk estimated from ST-segment deviations in patients with acute myocardial infarction.
J Electrocardiol. 2009;42:172-180.
[PubMed: 19159899]
121. Galeotti L, Strauss DG, Ubachs JF, et al. Development of an automated method for display of ischemic myocardium from simulated electrocardiograms.
J Electrocardiol. 2009;42:204-212.
[PubMed: 19159902]
122. Andersen MP, Terkelsen CJ, Struijk JJ. The ST compass: spatial visualization of ST-segment deviations and estimation of the ST injury vector.
J Electrocardiol. 2009;42:181-189.
[PubMed: 19159903]
123. Bayes de Luna A, Wagner G, Birnbaum Y, et al. A new terminology for left ventricular walls and location of myocardial infarcts that present Q wave based on the standard of cardiac magnetic resonance imaging: a statement for healthcare professionals from a committee appointed by the International Society for Holter and Noninvasive Electrocardiography. Circulation. 2006;114:1755-1760.
124. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.
Circulation. 2002;105:539-542.
[PubMed: 11815441]
125. Moon JC, De Arenaza DP, Elkington AG, et al. The pathologic basis of Q-wave and non-Q-wave myocardial infarction: a cardiovascular magnetic resonance study.
J Am Coll Cardiol. 2004;44:554-560.
[PubMed: 15358019]
126. Kaandorp TA, Bax JJ, Lamb HJ, et al. Which parameters on magnetic resonance imaging determine Q waves on the electrocardiogram?
Am J Cardiol. 2005;95:925-929.
[PubMed: 15820156]
127. Engblom H, Hedstrom E, Heiberg E, et al. Size and transmural extent of first-time reperfused myocardial infarction assessed by cardiac magnetic resonance can be estimated by 12-lead electrocardiogram.
Am Heart J. 2005;150:920.
[PubMed: 16290962]
128. Wu E, Judd RM, Vargas JD, et al. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction.
Lancet. 2001;357:21-28.
[PubMed: 11197356]
129. Engblom H, Carlsson MB, Hedstrom E, et al. The endocardial extent of reperfused first-time myocardial infarction is more predictive of pathologic Q waves than is infarct transmurality: a magnetic resonance imaging study.
Clin Physiol Funct Imaging. 2007;27:101-108.
[PubMed: 17309530]
130. Pappas MP. Disappearance of pathological Q waves after cardiac infarction.
Br Heart J. 1958;20:123-128.
[PubMed: 13499776]
131. Albert DE, Califf RM, LeCocq DA, et al. Comparative rates of resolution of QRS changes after operative and nonoperative acute myocardial infarcts.
Am J Cardiol. 1983;51:378-381.
[PubMed: 6600575]
132. Lyck F, Holmvang L, Grande P, et al. Effects of revascularization after first acute myocardial infarction on the evolution of QRS complex changes (the DANAMI trial). DANish Trial in Acute Myocardial Infarction.
Am J Cardiol. 1999;83:488-492.
[PubMed: 10073848]
133. Engblom H, Hedström E, Heiberg E, et al. Rapid initial reduction of hyperenhanced myocardium after reperfused first myocardial infarction suggests recovery of the peri-infarction zone: one-year follow-up by MRI
Circ Cardiovasc Imaging. 2009;2:47-55.
[PubMed: 19808564]