1. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart Disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.
Circulation. 2009;119:480-486.
[PubMed: 19171871]
2. Helm PA, Younes L, Beg MF, et al. Evidence of structural remodeling in the dyssynchronous failing heart.
Circ Res. 2006;98:125-132.
[PubMed: 16339482]
3. Cheng A, Nguyen
TC, Malinowski M, et al. Heterogeneity of left ventricular wall thickening mechanisms.
Circulation. 2008;118:713-721.
[PubMed: 18663088]
4. LeGrice IJ, Takayama Y, Covell JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening.
Circ Res. 1995;77:182-193.
[PubMed: 7788876]
5. Hooks DA, Trew ML, Caldwell BJ, et al. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ Res. 2007;101: e103-e112.
6. Akar FG, Nass RD, Hahn S, et al. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol. 2007;293:H1223-H1230.
7. Akar FG, Spragg DD, Tunin RS, et al. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy.
Circ Res. 2004;95:717-725.
[PubMed: 15345654]
8. Kaab S, Nuss HB, Chiamvimonvat N, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure.
Circ Res. 1996;78:262-273.
[PubMed: 8575070]
9. O'Rourke B, Kass DA, Tomaselli GF, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure. I: Experimental studies.
Circ Res. 1999;84:562-570.
[PubMed: 10082478]
10. Marijianowski MM, Teeling P, Mann J, et al. Dilated cardiomyopathy is associated with an increase in the type I/type III
collagen ratio: a quantitative assessment.
J Am Coll Cardiol. 1995;25:1263-1272.
[PubMed: 7722119]
11. Wu Y, Bell SP, Trombitas K, et al. Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness.
Circulation. 2002;106:1384-1389.
[PubMed: 12221057]
12. Bleeker GB, Bax JJ, Steendijk P, et al. Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment.
Nat Clin Pract Cardiovasc Med. 2006;3:213-219.
[PubMed: 16568130]
13. Nelson GS, Berger RD, Fetics BJ, et al. Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block.
Circulation. 2000;102:3053-3059.
[PubMed: 11120694]
14. Sutton MG, Plappert T, Hilpisch KE, et al. Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative doppler echocardiographic evidence from the Multicenter Insync Randomized Clinical Evaluation (MIRACLE).
Circulation. 2006;113:266-272.
[PubMed: 16401777]
15. Auricchio A, Stellbrink C, Butter C, et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay.
J Am Coll Cardiol. 2003;42:2109-2116.
[PubMed: 14680736]
16. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure.
N Engl J Med. 2005;352:1539-1549.
[PubMed: 15753115]
17. Kass DA. Cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2005;16(Suppl 1):S35-S41.
18. Fauchier L, Marie O, Casset-Senon D, et al. Reliability of QRS duration and morphology on surface electrocardiogram to identify ventricular dyssynchrony in patients with idiopathic dilated cardiomyopathy.
Am J Cardiol. 2003;92:341-344.
[PubMed: 12888151]
19. Auricchio A, Stellbrink C, Block M, et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for Congestive Heart Failure Study Group. The Guidant Congestive Heart Failure Research Group.
Circulation. 1999;99:2993-3001.
[PubMed: 10368116]
20. Pitzalis MV, Iacoviello M, Romito R, et al. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony.
J Am Coll Cardiol. 2002;40:1615-1622.
[PubMed: 12427414]
21. Fauchier L, Marie O, Casset-Senon D, et al. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: a prognostic study with Fourier phase analysis of radionuclide angioscintigraphy.
J Am Coll Cardiol. 2002;40:2022-2030.
[PubMed: 12475464]
22. Yu CM, Chau E, Sanderson JE, et al. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure.
Circulation. 2002;105:438-445.
[PubMed: 11815425]
23. Bax JJ, Bleeker GB, Marwick TH, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy.
J Am Coll Cardiol. 2004;44:1834-1840.
[PubMed: 15519016]
24. Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) Trial.
Circulation. 2008;117:2608-2616.
[PubMed: 18458170]
25. Beshai JF, Grimm RA, Nagueh SF, et al. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes.
N Engl J Med. 2007;357:2461-2471.
[PubMed: 17986493]
26. Bleeker GB, Kaandorp TA, Lamb HJ, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy.
Circulation. 2006;113:969-976.
[PubMed: 16476852]
27. Adelstein
EC, Saba S. Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy.
Am Heart J. 2007;153:105-112.
[PubMed: 17174647]
28. White JA, Yee R, Yuan X, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony.
J Am Coll Cardiol. 2006;48:1953-1960.
[PubMed: 17112984]
29. Choi KM, Kim RJ, Gubernikoff G, et al. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function.
Circulation. 2001;104:1101-1107.
[PubMed: 11535563]
30. Butter C, Auricchio A, Stellbrink C, et al. Should stimulation site be tailored in the individual heart failure patient? J Am Coll Cardiol. 2000;86:144K-151K.
31. St John Sutton MG, Plappert T, Abraham WT, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation. 2003;107:1985-1990.
32. Helm RH, Byrne M, Helm PA, et al. Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization.
Circulation. 2007;115:953-961.
[PubMed: 17296857]
33. Ypenburg C, van Bommel RJ, Delgado V, et al. Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy.
J Am Coll Cardiol. 2008;52:1402-1409.
[PubMed: 18940531]
34. Butter C, Auricchio A, Stellbrink C, et al. Effect of resynchronization therapy stimulation site on the systolic function of heart failure patients.
Circulation. 2001;104:3026-3029.
[PubMed: 11748094]
35. Leclercq F, Hager FX, Macia JC, et al. Left ventricular lead insertion using a modified transseptal catheterization technique: a totally endocardial approach for permanent biventricular pacing in end-stage heart failure.
Pacing Clin Electrophysiol. 1999;22:1570-1575.
[PubMed: 10598958]
36. Ji S, Cesario DA, Swerdlow CD, et al. Left ventricular endocardial lead placement using a modified transseptal approach.
J Cardiovasc Electrophysiol. 2004;15:234-236.
[PubMed: 15028056]
37. Fish JM, Brugada J, Antzelevitch C. Potential proarrhythmic effects of biventricular pacing.
J Am Coll Cardiol. 2005;46:2340-2347.
[PubMed: 16360069]
38. van Deursen C, van Geldorp IE, Rademakers LM, et al. LV endocardial pacing improves resynchronization therapy in canine LBBB hearts. Circ Arrhythm Electrophysiol. 2009;2:580-587.
39. Rademakers LM, van Hunnik A, Lampert A, et al. Electrical and hemodynamic benefits of endocardial CRT with chronic infarction and LBBB. Heart Rhythm. 2009;6(Suppl 5):S237.
40. Spragg DD, Dong J, Fetics BJ, et al. Optimal LV endocardial pacing sites for CRT. Heart Rhythm. 2008;5(Suppl 5):S334.
41. Garrigue S, Jais P, Espil G, et al. Comparison of chronic biventricular pacing between epicardial and endocardial left ventricular stimulation using Doppler tissue imaging in patients with heart failure.
Am J Cardiol. 2001;88:858-862.
[PubMed: 11676947]
42. Trayanova NA, Tice BM. Integrative computational models of cardiac arrhythmias: simulating the structurally realistic heart.
Drug Discov Today Dis Models. 2009;6:85-91.
[PubMed: 20628585]
43. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation.
Circ Res. 1994;74:1097-1113.
[PubMed: 7514510]
44. Mahajan A, Shiferaw Y, Sato D, et al. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.
Biophys J. 2008;94:392-410.
[PubMed: 18160660]
45. Fox JJ, McHarg JL, Gilmour RF Jr. Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol. 2002;282:H516-H530.
46. Weiss DL, Keller DU, Seemann G, et al. The influence of fibre orientation, extracted from different segments of the human left ventricle, on the activation and repolarization sequence: a simulation study. Europace. 2007;9(Suppl 6):vi96-vi104.
47. Arevalo H, Rodriguez B, Trayanova N. Arrhythmogenesis in the heart: multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity.
Chaos. 2007;17:015103.
[PubMed: 17411260]
48. Baher A, Qu Z, Hayatdavoudi A, et al. Short-term cardiac memory and mother rotor fibrillation. Am J Physiol Heart Circ Physiol. 2007;292:H180-H189.
49. Xie F, Qu Z, Yang J, et al. A simulation study of the effects of cardiac anatomy in ventricular fibrillation.
J Clin Invest. 2004;113:686-693.
[PubMed: 14991066]
50. Ashihara T, Constantino J, Trayanova NA. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window.
Circ Res. 2008;102:737-745.
[PubMed: 18218982]
51. Rodriguez B, Li L, Eason JC, et al. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
Circ Res. 2005;97:168-175.
[PubMed: 15976315]
52. Rodriguez B, Tice BM, Eason JC, et al. Cardiac vulnerability to electric shocks during phase 1a of acute global ischemia.
Heart Rhythm. 2004;1:695-703.
[PubMed: 15851241]
53. Legrice IJ, Hunter PJ, Smaill BH. Laminar structure of the heart: a mathematical model. Am J Physiol Heart Circ Physiol. 1997;272(5 Pt 2):H2466-H2476.
54. Usyk TP, Mazhari R, McCulloch AD. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elasticity. 2000;61:143-164.
55. Nickerson D, Smith N, Hunter P. New developments in a strongly coupled cardiac electromechanical model. Europace. 2005;7(Suppl 2):118-127.
56. Campbell SG, Howard E, Aguado-Sierra J, et al. Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics.
Exp Physiol. 2009;94:541-552.
[PubMed: 19251984]
57. Usyk TP, McCulloch AD. Relationship between regional shortening and asynchronous electrical activation in a three-dimensional model of ventricular electromechanics. J Cardiovasc Electrophysiol. 2003;14(10 Suppl):S196-S202.
58. Usyk TP, LeGrice IJ, McCulloch AD. Computational model of three-dimensional cardiac electromechanics. Comput Visual Sci. 2002;4:249-247.
59. Kerckhoffs RC, Faris OP, Bovendeerd PH, et al. Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J Cardiovasc Electrophysiol. 2003;14(10 Suppl):S188-S195.
60. Kerckhoffs RC, Faris OP, Bovendeerd PH, et al. Electromechanics of paced left ventricle simulated by straightforward mathematical model: comparison with experiments. Am J Physiol Heart Circ Physiol. 2005;289:H1889-H1897.
61. Sermesant M, Delingette H, Ayache N. An electromechanical model of the heart for image analysis and simulation.
IEEE Trans Med Imaging. 2006;25:612-625.
[PubMed: 16689265]
62. Kerckhoffs RC, Lumens J, Vernooy K, et al. Cardiac resynchronization: insight from experimental and computational models. Prog Biophys Mol Biol. 2008;97(2-3):543-561.
63. Usyk TP, McCulloch AD. Electromechanical model of cardiac resynchronization in the dilated failing heart with left bundle branch block. J Electrocardiol. 2003;36(Suppl):57-61.
64. Kerckhoffs RC, McCulloch AD, Omens JH, et al. Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block.
Med Image Anal. 2009;13:362-369.
[PubMed: 18675578]
65. Xia L, Huo M, Wei Q, et al. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
Phys Med Biol. 2005;50:1901-1917.
[PubMed: 15815103]
66. Dou J, Xia L, Zhang Y, et al. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model.
Phys Med Biol. 2009;54:353-371.
[PubMed: 19098354]
67. Reumann M, Osswald B, Doessel O. Noninvasive, automatic optimization strategy in cardiac resynchronization therapy. Anadolu Kardiyol Derg. 2007;7(Suppl 1):209-212.
68. Reumann M, Farina D, Miri R, et al. Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy.
Med Biol Eng Comput. 2007;45:845-854.
[PubMed: 17657518]
69. Vadakkumpadan F, Rantner LJ, Tice B, et al. Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies.
J Electrocardiol. 2009;42:157.e1-e10.
[PubMed: 19181330]
70. Vadakkumpadan F, Arevalo H, Prassl A, et al. Image-based models of cardiac structure in health and disease.
Wiley Interdiscip Rev Syst Biol Med. 2010;2:489-506.
[PubMed: 20582162]
71. Vigmond E, Vadakkumpadan F, Gurev V, et al. Towards predictive modelling of the electrophysiology of the heart.
Exp Physiol. 2009;94:563-577.
[PubMed: 19270037]
72. Law MW, Chung
AC. Vessel and intracranial aneurysm segmentation using multi-range filters and local variances.
Med Image Comput Comput Assist Interv. 2007;10:866-874.
[PubMed: 18051140]
73. Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell. 1994;16:641-647.
74. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy.
Magn Reson Med. 1996;36:893-906.
[PubMed: 8946355]
75. Schmidt A, Azevedo CF, Cheng A, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction.
Circulation. 2007;115:2006-2014.
[PubMed: 17389270]
76. Wu MT, Tseng WY, Su MY, et al. Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion.
Circulation. 2006;114:1036-1045.
[PubMed: 16940196]
77. Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality.
Circulation. 2006;114:32-39.
[PubMed: 16801462]
78. Pollard AE, Burgess MJ, Spitzer KW. Computer simulations of three-dimensional propagation in ventricular myocardium. Effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation.
Circ Res. 1993;72:744-756.
[PubMed: 8443866]
79. Plank G, Zhou L, Greenstein JL, et al. From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales.
Philos Transact A Math Phys Eng Sci. 2008;366:3381-3409.
[PubMed: 18603526]
80. Prassl A, Kickinger F, Ahammer H, et al. Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems.
IEEE Trans Biomed Eng. 2009;56:1318-1330.
[PubMed: 19203877]
81. Onate E, Rojek J, Taylor RL, et al. Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int J Numer Meth Engng. 2004;59:1473-1500.
82. Gurev V, Lee T, Constantino J, et al. Finite element ventricular models of cardiac mechanics based on MRI and DTMRI anatomy. Biomech Model Mechanobiol. June 30, 2010 [Epub ahead of print].
83. Nielsen PM, Le Grice IJ, Smaill BH, et al. Mathematical model of geometry and fibrous structure of the heart. Am J Physiol Heart Circ Physiol. 1991;260:H1365-H1378.
84. Bovendeerd PH, Arts T, Huyghe JM, et al. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study.
J Biomech. 1992;25:1129-1140.
[PubMed: 1400513]
85. Arsigny V, Fillard P, Pennec X, et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors.
Magn Reson Med. 2006;56:411-421.
[PubMed: 16788917]
86. Guccione JM, Costa KD, McCulloch AD. Finite element stress analysis of left ventricular mechanics in the beating dog heart.
J Biomech. 1995;28:1167-1177.
[PubMed: 8550635]
87. Usyk T, Legrice I, McCulloch A. Computational model of three-dimensional cardiac electromechanics. Comput Visual Sci. 2002;4:249-257.
88. Usyk TP, McCulloch AD. Electromechanical model of cardiac resynchronization in the dilated failing heart with left bundle branch block. J Electrocardiol. 2003;36(Suppl):57-61.
89. Kerckhoffs R, Neal M, Gu Q, et al. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation.
Ann Biomed Eng. 2007;35:1-18.
[PubMed: 17111210]
90. Solovyova O, L Katnelson, Guriev S, et al. Mechanical inhomogeneity of myocardium studied in parallel and serial cardiac muscle duplexes: experiments and models. Chaos Solitons Fractals. 2002;13:1685-1711.
91. Rice JJ, Wang F, Bers DM, et al. Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations.
Biophys J. 2008;95:2368-2390.
[PubMed: 18234826]
92. Campbell SG, Flaim SN, Leem CH, et al. Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model.
Philos Transact A Math Phys Eng Sci. 2008;366:3361-3368.
[PubMed: 18593662]
93. Hasenfuss G, Reinecke H, Studer R, et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium.
Circ Res. 1994;75:434-442.
[PubMed: 8062417]
94. del Monte F, O'Gara P, Poole-Wilson PA, et al. Cell geometry and contractile abnormalities of myocytes from failing human left ventricle. Cardiovasc Res. 1995;30:281-290.
95. Gurev V, Constantino J, Rice JJ, et al. Distribution of electromechanical delay in the ventricles: insights from a 3D electromechanical model of the heart.
Biophys J. 2010;99:745-754.
[PubMed: 20682251]
96. Durrer D, van Dam RT, Freud GE, et al. Total excitation of the isolated human heart.
Circulation. 1970;41:899-912.
[PubMed: 5482907]
97. Spach MS, Barr RC. Ventricular intramural and epicardial potential distributions during ventricular activation and repolarization in the intact dog.
Circ Res. 1975;37:243-257.
[PubMed: 1149199]
98. Sengupta PP, Khandheria BK, Korinek J, et al. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening.
J Am Coll Cardiol. 2006;47:163-172.
[PubMed: 16386681]
99. Ashikaga H, Coppola BA, Hopenfeld B, et al. Transmural dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo.
J Am Coll Cardiol. 2007;49:909-916.
[PubMed: 17320750]
100. Ashikaga H, Omens JH, Ingels NB JR, et al. Transmural mechanics at left ventricular epicardial pacing site. Am J Physiol Heart Circ Physiol. 2004;286:H2401-H2407.
101. Sengupta PP, Khandheria BK, Narula J. Twist and untwist mechanics of the left ventricle.
Heart Fail Clin. 2008;4:315-324.
[PubMed: 18598983]