Skip to Main Content


In 1931, Paul Dudley White stated, "There is no treatment for aortic stenosis." Even today the medical therapy of aortic stenosis has not significantly advanced (Fig. 32-1).1 Conversely, patients may tolerate aortic insufficiency for many years, but as the ventricle starts to dilate, a progressive downhill course begins and early operation is warranted.2 Definitive therapy for aortic valve disease was unavailable until the advent of cardiopulmonary bypass. Innovative cardiovascular surgeons then began to develop cardiac valve prostheses. Over the subsequent 50 years3 the variety of prostheses that have become available for use have expanded greatly. Available aortic valve substitutes include mechanical valve prostheses, stented biologic valve prostheses, stentless biologic valve prostheses, human homograft tissue (both as isolated valve replacement and aortic root replacement), percutaneous or transapical biologic valves and a combination of a biologic valve using a pulmonary autograft, and pulmonary outflow tract replacement with heterograft prostheses (Ross procedure). This chapter focuses on the use of mechanical valve replacement in the aortic position.

Figure 32-1
Graphic Jump Location

Survival of patients having aortic valve replacement compared to those not having valve replacement. (Reproduced with permission from Carabello BA: Clinical practice. Aortic stenosis. NEJM 2002; 346:677.)


In 1952, Hufnagel used an aortic valve ball and cage prosthesis heterotopically in the descending thoracic aorta to treat aortic insufficiency.4 After the advent of cardiopulmonary bypass, initial attempts at aortic valve replacement (AVR) consisted of replacement of the individual aortic cusps with Ivalon gussets sewn to the annulus. When successful, these prostheses often calcified and results were short lived. Shortly thereafter, surgical pioneers Starr, Braunwald, and Harkin began replacement of the aortic valve in the orthotopic position. First-generation aortic valve prostheses, the ball and cage, became the standard for AVR for more than a decade (Fig. 32-2). Many of these prostheses have remained durable for up to 40 years.5,6 Multiple modifications ensued, including changing the material of the ball from silastic to stellite, changes in the shape of the cage, depression of the ball occluder, the addition of cloth coating to the sewing ring and the cage, and changes in the sewing ring itself. These valves, however, required intense anticoagulation.7 Hemodynamic performance was compromised because there were three areas of potential outflow obstruction: (1) the annular size of the sewing ring (the effective orifice area of the valve); (2) the distance between the cage and the walls of the ascending aorta (particularly in the small aortic root); and (3) obstruction to outflow by the ball itself distal to the tissue annulus. Flow patterns were also abnormal (Fig. 32-3). These problems led to the development of the next generation of aortic valve prostheses—the tilting disc valve. Innovators such as Björk, Hall, Kaster, and Lillehei developed three models of tilting disc prostheses that became the second generation of commonly implanted aortic ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.


About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessCardiology Full Site: One-Year Subscription

Connect to the full suite of AccessCardiology content and resources including textbooks such as Hurst's the Heart and Cardiology Clinical Questions, a unique library of multimedia, including heart imaging, an integrated drug database, and more.

$595 USD
Buy Now

Pay Per View: Timed Access to all of AccessCardiology

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.