Skip to Main Content

++

FUNCTIONAL MECHANICS OF NORMAL AND ABNORMAL VASCULAR FLOW

++

Describing pulsatile fluid systems mathematically is very complex. Hemodynamics can be defined as the physical factors that influence blood flow which is based on fundamental laws of physics, namely Ohm's law: Voltage (Δ V) equals the product of current (I) and resistance (R), i.e.,

++

Image not available.

++

In relating Ohm's law to fluid flow, the voltage is the pressure difference between two points (δ P), the resistance is the resistance to flow (R), and the current is the blood flow (F):

++

Image not available.

++

Resistance to blood flow within a vascular network is determined by the length and diameter of individual vessels, the physical characteristics of the blood (viscosity, laminar flow versus turbulent flow), the series and parallel arrangements of vascular network, and extravascular mechanical forces acting upon the vasculature. This is expressed in Poiseuille's law:

++

Image not available.

++

Poiseuille's Law relates the rate at which blood flows through a small blood vessel (Q) with the difference in blood pressure at the two ends (Δ P), the radius (r) and the length (L) of the artery, and the viscosity (η) of the blood.

++

Of the above factors, changes in vessel diameter are most important quantitatively for regulating blood flow as well as arterial pressure within an organ. Changes in vessel diameter, either by constriction or dilatation, enable organs to adjust their own blood flow to meet the metabolic requirements of the tissue. Flow velocity increases as the pressure gradient increases and flow volumes are relatively preserved, only to a point though.

++

Osborne Reynolds determined how viscosity, vessel radius, and pressure/volume relations influenced the stability of flow through a vessel:

++

Image not available.

++

Density and viscosity are relatively constant, therefore the development of turbulence depends mainly on the velocity and size of the vessel. Density is defined as mass per unit volume and viscosity is defined as a measure of the resistance of a fluid to being deformed by either shear stress or extensional stress. A Reynolds number >2000 causes turbulence and vessel wall vibration producing a bruit. High velocities cause turbulence and hinder volumes flow, creating eddies.

++

TYPES OF VASCULAR ULTRASOUND

++

Basics of Vascular Ultrasound

++

Ultrasonic waves entering human tissue are absorbed, reflected, and scattered to produce images of anatomic structures. The transmission properties of the sound waves depend on the density and elasticity of the tissues. Density and speed of propagation of ultrasound waves determine a tissue's acoustic impedance. The larger the differences in acoustic impedance between tissues, the more ultrasound waves are reflected. The reflection further depends on the angle of insonation. Strong reflective interfaces, such as air or bone, prevent imaging of weaker echoes from deeper ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessCardiology Full Site: One-Year Subscription

Connect to the full suite of AccessCardiology content and resources including textbooks such as Hurst's the Heart and Cardiology Clinical Questions, a unique library of multimedia, including heart imaging, an integrated drug database, and more.

$595 USD
Buy Now

Pay Per View: Timed Access to all of AccessCardiology

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.