Skip to Main Content

++

INTRODUCTION

++

SPECT myocardial perfusion imaging (MPI) has been widely used for over 30 years for the detection and risk stratification of coronary disease. SPECT imaging has become the largest billing code for non-invasive imaging and its acceptance in the community has been very strong due to its reliability, ease of use, and availability. While the technology has improved throughout the years, there remain several important limitations including: long protocol times, high incidence of attenuation and other artifacts, use of suboptimal tracers, and frequent underestimation of the presence and severity of coronary artery disease.

++

Currently the protocol most often used in nuclear laboratories necessitates a separate rest and stress SPECT study, requiring 3–4 h for completion. Present technologies do not adequately address potential artifact including motion during the test, attenuation artifact, and errors in processing that can lead to a high percentage of false-positive studies. The available stress agents all have limitations of either image quality or accuracy such that multivessel disease is often missed. Active research is aimed at addressing some of these problems, but potential solutions are not clinically implemented.

++

An alternative to SPECT imaging is cardiac positron emission tomographic imaging (PET). PET imaging has been available for several years as a diagnostic modality in patients with oncologic diseases but only recently has become more widely used in the cardiac arena. As PET imaging has grown, so has come with it the recognition that the limitations found in SPECT imaging might be resolved with this more advanced technology. This has resulted in a growing interest in PET imaging for cardiac diseases. When compared to SPECT MPI, cardiac PET imaging has been shown to provide better image quality, better diagnostic accuracy, and faster acquisition times. This chapter will review the principles of cardiac PET and the differences between PET and SPECT imaging, and provide recommendations for when PET should be used clinically.

++

PRINCIPLES OF CARDIAC PET

++

PET imaging provides accurate temporal and spatial distribution of radioactive atoms as they decay. A radioactive tracer, which has been engineered to be taken up in to the organ of interest, is injected into the patient. After it reaches the target organ, the radioactive agent begins to decay and emits a positron (Fig. 11-1). This positron then collides with a nearby electron. The resulting collision causes annihilation of both an electron and a positron. The annihilation creates a high-energy discharge of 1.02 MeV. This energy is split into two gamma rays each 511 keV in energy, which are emitted 180° from each other. Multiple detectors circle the patient; absorption from both emissions simultaneously occurs. The processing of these simultaneous events forms the basis of PET imaging.1

++
FIGURE 11-1

Annihilation event during PET imaging.

Graphic Jump Location
++

CARDIAC PET INSTRUMENTATION

++

A PET ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessCardiology Full Site: One-Year Subscription

Connect to the full suite of AccessCardiology content and resources including textbooks such as Hurst's the Heart and Cardiology Clinical Questions, a unique library of multimedia, including heart imaging, an integrated drug database, and more.

$595 USD
Buy Now

Pay Per View: Timed Access to all of AccessCardiology

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.